written by:
David Dillon,
Department of Earth Sciences,
The University of Western Ontario
Introduction
One question that confronts a teacher of geology is: “How do I do this with the minimum expenditure and the greatest influence on the ability of my students to learn?” The following is a set of suggestions that may be of value to you as a teacher.
1) Go on a field trip to collect rocks. Go your
own, or take your class. Including students can excite their interest.
2) Once this has been done, the next task is
to categorise your samples into those that are readily identifiable and
challenging specimens. (In an ideal world, everybody picks up textbook
examples of the various rock species. I find that this is much less common
than I would prefer. This is because rocks are often subjected to physical
and chemical alteration after their initial hardening. When this is the
case, a teacher has to rely on someone with greater experience.)
Integral to this task is the process of learning
how to identify rock and mineral species.
The leftover samples of this task form a collection
either to challenge your developing prowess, or to be discarded.
3) You may wish to place the rocks into the context
of where and how they were formed. This is a major aspect of what academic
geologists do.
There are over 3000 mineral species. Of these,
350 are abundant enough to find in crustal rocks. Few are abundant enough
to be common constituents in rocks. They include: talc, gypsum, calcite,
fluorite, halite, quartz, garnet, amphibole, pyroxene, orthoclase, plagioclase,
muscovite, biotite, hematite, magnetite, pyrite, chalcopyrite, serpentine,
sphalerite, galena, graphite, apatite, corundum, olivine, chlorite, epidote
and dolomite. Many of these minerals have economic value:
Talc is the chief constituent in talcum powder.
Gypsum, until the latter part of the twentieth
century was the source of wallboard and plaster.
Calcite is the major component in limestone and
marble. Limestone is quarried to make quicklime for the production of Portland
cement and flux for the steel industry.
Halite is used as table salt and for de-icing
highways.
Quartz is a major component in the making of
glass, as well as electronic due to its piezo-electrical property.
Garnet and corundum are used as abrasives. Their
gem varieties are used for jewellery.
Muscovite and biotite have been used for insulation
and even furnace windows.
Hematite, magnetite, sphalerite, chalcopyrite,
and galena have been mined for their metal contents.
Pyrite was once mined for its sulphur.
One variety of serpentine, chrysotile is used
for asbestos.
Materials:
Rocks collected by teacher, or even better, by
students.
Procedure (Identifying Mineral Properties):
Once you’ve got your rocks and minerals, try
to look for identifiable characteristics. These are usually in terms of
mineral species and textures.
It’s important to understand that when the word
“texture” is used in a geological context, it refers to how the rock is
constituted, rather than how it feels.
The mineral species are recognised and identified
via the physical properties they exhibit. True, they are chemical compounds
and a chemical analysis will help you identify them, but such analysis
is beyond the practical capability of most teachers. The physical
properties of minerals are varied. Some provide good means to differentiate
mineral species.
1) Lustre
When geologists and mineralogists look at a mineral,
they consider what the material looks like. The first lustre type we’ll
address is “metallic”. That is, does the mineral look like a metal. Consider
if the it looks like it could be converted into a coin, mirror or something
commonly made of metal. The following minerals are metallic: magnetite,
pyrite, chalcopyrite, galena, and graphite. Hematite is metallic when it
occurs in visible crystals, but it tends to be earthy when extremely fine-grained.
Earthy lustre is like the appearance of dried
mud. Light dispersed in all directions from the minute grains.
Pearly is a lustre that invokes the memory of
pearls. It is due to the reflection of light off parallel internal planes.
Talc, gypsum, muscovite, biotite and chlorite can have pearly lustre.
Greasy lustre is reminiscent of cold hardened
fat. It is also similar in some ways to solid wax. Talc, serpentine, and
corundum can be greasy.
Resinous is a lustre that appears like congealed
tree sap. The internal reflections where the material is broken look similar
to those in pine gum or plastic. Sphalerite, and to a lesser extent apatite
and garnet have resinous lustre.
Vitreous lustre is the look of glass. It doesn’t
matter whether it is transparent, translucent or opaque. Gypsum, calcite,
fluorite, halite, quartz, garnet, amphibole, pyroxene, orthoclase, plagioclase,
muscovite, biotite, apatite, olivine, epidote and dolomite can exhibit
vitreous lustre.
Silky is a lustre that speaks of the fibrous
nature of the mineral. Chrysotile (a variety of serpentine) is silky.
2) Streak
When a mineral is rubbed along a surface than
it is, (such as a porcelain plate) it leaves some of itself behind as a
thin film. To test for streak rub the sample across a streak plate, wipe
away the excess powder and observe the colour of the film left. Most
metallic minerals will give a coloured streak, most non-metallic minerals
lack a coloured streak. Amphibole and chlorite
often leave a light grey-green streak. Biotite streaks light brown. Magnetite,
pyrite, chalcopyrite, graphite and galena leave black streaks. Sphalerite
streaks can range from cream through yellow to brown. Hematite leaves a
distinct red-brown streak on a plate.
3) Diaphaneity
Diapheneity is the ability to transmit light.
The associated terms are: transparent, translucent or opaque.
Transparent minerals allow light to pass through
and you can see well enough to read through them. For example: gypsum,
calcite, fluorite, halite, quartz, apatite, olivine, epidote, dolomite,
muscovite, garnet, corundum and biotite can be transparent. For some of
these minerals you would have to see thin specimens or those of gem quality.
Translucent minerals allow light to pass through
but you cannot see objects through them. This is the majority of minerals.
Talc, gypsum, calcite, fluorite, halite, quartz, garnet, amphibole, pyroxene,
orthoclase, plagioclase, muscovite, biotite, serpentine, sphalerite, apatite,
corundum, olivine, chlorite, epidote and dolomite tend to be translucent.
Opaque minerals absorb and reflect light. to
pass through them and you cannot see through them. Hematite, magnetite,
pyrite, chalcopyrite, sphalerite, galena and graphite are opaque.
4) Mineral hardness
An Austrian by the name of Fredrick Mohs established
a scale based on resistance to being scratched. This scale goes from 1
(softest) to 10 (hardest). For the purposes of identifying minerals, it
is only necessary to see if an unknown falls within a particular hardness
range. Geologists usually take the following tools with them to do hardness
tests.
These are:
porcelain plate, 7.0
glass, 5.5
a knife blade, 5.0
copper coin, 3.0
fingernail, 2.5.
Mohs’ hardness scale is shown here.
|
|
Diamond |
|
Corundum |
|
Topaz |
|
Quartz |
|
Plagioclase |
|
Apatite |
|
Fluorite |
|
Calcite |
|
Gypsum |
|
Talc |
|
The minerals of our set are laid out similarly.
|
|
corundum | 9.0 |
garnet | 6.5-7.5 |
quartz | 7.0 |
olivine | 6.5-7.0 |
epidote | 6.0-7.0 |
pyrite | 6.0-6.5 |
hematite | 5.5-6.5 |
orthoclase
plagioclase |
6.0 |
magnetite | 6.0 |
amphibole
pyroxene |
5.0-6.0 |
apatite | 5.0 |
serpentine | 2.0-5.0 |
fluorite | 4.0 |
dolomite
chalcopyrite sphalerite |
3.5-4.0 |
calcite | 3.0 |
muscovite
biotite |
2.5-3.0 |
halite
galena |
2.5 |
chlorite | 2.0-2.5 |
gypsum | 2.0 |
graphite | 1-1.5 |
talc | 1.0 |
5) Cleavage
When minerals break, they do so in either an
irregular fashion or in ways that are predictable. When breakage is irregular,
it is called a fracture. When it is along planes of weakness, it is called
cleavage.
We can count the number of unique directions
in which there is planar failure as well as the angle between cleavage
directions and the quality of the cleavage. Cleavage is often
the most difficult of the physical properties to identify. It takes
practise to identify cleavages and their angles of intersection.
Cleavage is indicated when:
a) The sample has a simple geometric shape e.g.
a cube or simple prism.
b) Several broken samples of the same mineral
show common angles or shapes.
c) The mineral has surfaces (including
internal ones) that reflect light as single planes.
d) The mineral has parallel sets of flashing
surfaces.
A mineral with no cleavage typically shows
a) Non-geometric or very complex geometric shapes.
b) Several samples have different shapes.
c) Mineral surfaces are curved or pointed.
d) Mineral surfaces are dull.
e) The top of a mineral flashes, but the parallel
surface does not. This may be the case if the shiny surface is a crystal
face.
Light tends to be dispersed from fractured surfaces,
whereas light tends to be reflected in a planar fashion from a cleaved
surface.
Basal cleavage
One direction of cleavage (basal) results in
flake-shaped pieces and often a pearly lustre. Minerals having
basal cleavage include talc, muscovite, biotite, graphite and chlorite.
Gypsum exhibits one perfect cleavage with two less distinct cleavages.
Prismatic cleavage
Two directions of cleavage (prismatic)
result in pieces that are often rod-like. Amphibole, pyroxene, orthoclase
and plagioclase have prismatic cleavage. Epidote has one perfect cleavage
with a second that is well developed (good). The angle between cleavage
directions is important especially when attempting to distinguish between
amphibole and pyroxene. Both have similar hardness and colour range. Pyroxene
however, cleaves at 90º, while amphibole cleaves near 120º and
60º.
Cleavage types with more than two planes
Three directions of cleavage can be divided into
those at 90º (cubic) and those at something else (rhombohedral).
Halite and galena exhibit cubic cleavage. Dolomite and calcite show rhombohedral
cleavage. Only one mineral in the set cleaves in four directions
(octahedral). This is fluorite. The largest number of cleavages
is exhibited by sphalerite. There are six directions of cleavages and it
is work to see them all except in very large crystal grains.
Poor cleavage or no cleavage
The mineral apatite cleaves into irregular pieces.
For our purposes, it might as well be thought of as a mineral that fractures.
The rest of the mineral set: quartz, garnet, apatite, corundum, olivine,
hematite, magnetite, pyrite and chalcopyrite break irregularly.
6) Crystal form
Sometimes it is possible to see the external
form of crystals. This not common. As a result crystal faces, when seen,
can be misidentified as cleavages. The following properties can be
helpful in distinguishing crystal faces from cleavage surfaces.
a) While crystals and cleavage faces are similar
(they are flat surfaces that, may be parallel and reflect light as a single
plane), crystals commonly have complex shapes and with more surfaces than
would be produced by cleavages.
b) Crystal faces are not necessarily reproduced
when the crystal is broken. In the case of quartz, there is no cleavage.
Flat surfaces are therefore cleavage faces. Of
the mineral set, there are some which may be found as crystals more frequently
than others. Quartz forms hexagonal prisms topped by six-sided pyramids.
Garnet forms dodecahedrons. Magnetite crystals are octahedrons. Pyrite
commonly forms as cubes, but is also seen as “pyritohedrons” - dodecahedrons
with five-sided faces. Chalcopyrite forms tetrahedrons that are slightly
elongated. Galena commonly forms cubes. Apatite forms hexagonal prisms
with rounded or complex ends. Corundum occurs as barrel-shaped hexagonal
prisms. Dolomite forms rhombohedral crystals.
7) Specific gravity
This is a way of measuring the density of a mineral.
It is specifically the ratio of the mass of a mineral divided by the mass
of the same volume of water. For our purposes, it is important to be familiar
with minerals that are relatively light versus those that tend to be heavy.
For example, both graphite and galena are metals that are grye and have
a metallic lustre. However graphite is extremely light in comparison with
feels light or heavy. The metallic minerals are usually heavy, most
non-metallic minerals are light.
8) Other diagnostic properties
Some minerals have characteristics that make
them easy to identify. For example, halite has the characteristic taste
of table salt. It is better to look for some of the other characteristics
of halite before tasting your rock and mineral samples. Indiscriminate
tasting can be catastrophic to your health! Consider that some of the minerals
in our set contain a lot of lead, zinc, copper and trace amounts of cadmium,
mercury and maybe arsenic!
Effevescence
Calcite (CaCO3) reacts readily with dilute HCL
(Hydrochloric acid) and will fizz. The mineral dolomite (CaMg(CO3)2)
is like calcite but will only fizz with HCl when it is powdered.
Striations
Only two minerals in our set exhibit twinning
striations. Twinning striations are due to wafer-like inter-grown crystals
with different structural orientations. Plagioclase typically shows these
straight, parallel lines (best seen on cleavage faces). Orthoclase, also
a feldspar, lacks these. Calcite sometimes exhibits striations but not
as often as feldspars.
Magnetism
Magnetite is the only mineral in our set to be
attracted to a magnet. Other minerals show magnetic attraction, but they
are less common, the attraction is weaker, and they are not members of
our mineral set.
Additional Comments:
Observations of mineral properties should be
made on fresh surfaces of the mineral sample. Only include the physical
properties that you have measured for yourself. Do not copy mineral
descriptions from a textbook. This is self-defeating, as you do not
learn to do the tests or learn the diagnostic properties. One or
two diagnostic properties will often clinch the identification for you.
For example, magnetite has the strongest magnetic attraction of all of
the minerals. Hematite has a distinctive red-brown to go with its metallic
to earthy lustre range.
The table provided
here summarises what you’ve already read and adds a few remarks,
plus the chemical formulae of the simpler minerals.